Samsung предлагает концепцию «копирования и вставки» нейронных связей мозга на нейроморфных чипах

30.09.2021
Share open/close
Ссылка скопирована.

Samsung при участии ученых из Гарварда представляет новый подход для реверс-инжиниринга работы мозга, который предполагается осуществить на базе чипов памяти. Соответствующая работа была опубликована в журнале Nature Electronics

Компания Samsung Electronics, мировой лидер в области передовых полупроводниковых технологий, сегодня представила новую концепцию, которая еще на один шаг приближает мир к созданию нейроморфных чипов, позволяющих лучше воспроизводить работу мозга.

 

Идея, предложенная ведущими инженерами и учеными из Samsung и Гарвардского университета, была опубликована журналом Nature Electronics в виде обзорной статьи под названием «Нейроморфная электроника, основанная на копировании и вставке нейронных связей мозга» (‘Neuromorphic electronics based on copying and pasting the brain’). Соавторами статьи являются Донхи Хэм (Donhee Ham), научный сотрудник Samsung Advanced Institute of Technology (SAIT) и профессор Гарвардского университета, профессор Хункунь Парк (Hongkun Park) из Гарвардского университета, Сунгу Хван (Sungwoo Hwang), президент и главный исполнительный директор Samsung SDS и бывший глава SAIT, и Кинам Ким (Kinam Kim), вице-председатель и главный исполнительный директор Samsung Electronics.

 

Изображение нейронов крысы на CNEA (матрица наноэлектродов CMOS).

 

Суть выдвинутой авторами концепции лучше всего выражается двумя словами – «копировать» и «вставить». В статье предлагается способ копирования карты нейронных связей мозга с помощью революционной матрицы наноэлектродов, разработанной доктором Хэмом и доктором Парком, и вставки этой карты в высокоплотную трехмерную сеть твердотельной памяти, в технологиях разработки которой Samsung является мировым лидером.

 

С помощью этого подхода копирования и вставки авторы предполагают создать микросхему памяти, которая по своим характеристикам приблизится к уникальным вычислительным возможностям мозга – она будет обладать низким энергопотреблением, легко поддаваться обучению, адаптироваться к окружающей среде и даже будет отличаться автономностью и поддерживать когнитивные функции – все это является недосягаемым для нынешних технологий.

 

Мозг состоит из большого количества нейронов, и связи различных между ними отвечают за функции мозга. Таким образом, знание карты этих связей является ключом к реверс-инжинирингу работы мозга.

 

Хотя первоначальная цель нейроморфной инженерии, начало которой было положено еще в 1980-х годах, состояла в том, чтобы воспроизвести структуру и работу нейронных сетей на кремниевом чипе, эта задача оказалась чрезвычайно трудной – даже сейчас ученым мало что известно о том, какие связи существуют между большим количеством нейронов, участвующих в высших мозговых функциях. В результате цель нейроморфной инженерии была упрощена и сведена к созданию чипа, скорее, «по мотивам» мозга, а не к точному его повторению.

 

В этой статье предлагается способ вернуться к исходной нейроморфной цели реверс-инжиниринга мозга. Матрица наноэлектродов, в сущности, может входить в большое количество нейронов, благодаря чему она способна записывать их электрические сигналы с высокой чувствительностью. Эти массивно параллельные внутриклеточные записи позволяют сформировать карту нейронных связей, с указанием точек соединения нейронов и силы этих связей. Таким образом, из этих сигнальных записей можно извлечь или «скопировать» карту нейронных связей.

 

Скопированную нейронную карту затем можно «вставить» в сеть энергонезависимой памяти – например, коммерческую флэш-память, которая используется в нашей повседневной жизни в твердотельных накопителях (solid-state drives, SSD), или в «новую» память, например, с резистивным произвольным доступом (resistive random access memories, RRAM) – запрограммировав каждый элемент памяти таким образом, чтобы его проводимость представляла силу каждой нейронной связи в скопированной карте.

 

(Слева направо) Соавторы исследования Донхи Хэм (Donhee Ham), научный сотрудник Samsung Advanced Institute of Technology (SAIT) и профессор Гарвардского университета, профессор Хункунь Парк (Hongkun Park) из Гарвардского университета, Сунгу Хван (Sungwoo Hwang), президент и главный исполнительный директор Samsung SDS и бывший глава SAIT, и Кинам Ким (Kinam Kim), вице-председатель и главный исполнительный директор Samsung Electronics.

 

Авторы статьи развивают эту идею и предлагают стратегию быстрой вставки полученной карты нейронных связей в сеть памяти. Сеть специально спроектированных энергонезависимых запоминающих устройств может изучать и воспроизводить карту нейронных связей при непосредственном управлении от сигналов, записанных на внутриклеточном уровне. По сути, такая схема напрямую загружает карту нейронных связей мозга в чип памяти.

 

Поскольку человеческий мозг насчитывает примерно 100 миллиардов нейронов и еще примерно в тысячу раз больше синаптических связей, для создания нейроморфного чипа потребуется примерно 100 триллионов элементов памяти. Объединение такого огромного количества запоминающих элементов на одном чипе стала возможным благодаря 3D-интеграции памяти – развиваемой Samsung технологии, которая открывает новую эру в индустрии памяти.

 

Опираясь на свой передовой опыт в производстве микросхем, Samsung намерена продолжить исследования в сфере нейроморфной инженерии, чтобы укрепить лидирующие позиции Samsung в области полупроводников следующего поколения для технологий искусственного интеллекта.

 

«Представленная нами идея является весьма смелой и амбициозной, – сказал д-р Хэм. – Наша работа и продвижение к столь грандиозной цели позволит раздвинуть границы машинного интеллекта, нейробиологии и полупроводниковых технологий».

Продукты > Полупроводники

Новости компании > Технологии

По любым вопросам, связанным с сервисным обслуживанием, пожалуйста, обращайтесь на сайт samsung.com/kz_ru/support.
По вопросам сотрудничества со СМИ, пожалуйста, пишите на info.kz@samsung.com.

Узнайте актуальные новости о Samsung

Список статей
Наверх